## GlossaryT.Y-intercept History

Hide minor edits - Show changes to markup - Cancel

[] Up one level

[] Up one level

- quadratic formula
- root of a function
- polynom? (polynomial function)

- function
- root of a function (x-intercepts)
- linear function
- quadratic function

[row]

[]

Example: Find the y-intercept of the quadratic function f(x)=3x^2+2x-1

Example: Find the y-intercept of the quadratic function f(x)= x^2+2x-1

[table]

Example: TFind the y-intercept of the quadratic function f(x)=3x^2+2x-1

Example: Find the y-intercept of the quadratic function f(x)=3x^2+2x-1

That is, the point where this function crosses the y-axis is: (0,-1).

[c width=230]

[tableend]

[c]

[c]

[c]

[c]

[c]

[c]

[c]

[c]

[c]

[c]

Example: The y-intercept of the quadratic function f(x)=3x^2+2x-1 is -1 or (0,-1).

[c] y=-x+2

[c] y=\frac{1}{x}

[c] y=2^x

[c] f(x)=\sqrt{x+3}

[c width=180] y=-x+2

[c width=180] y=\frac{1}{x}

[c width=180] y=2^x

[c width=180] f(x)=\sqrt{x+3}

[c] y-intercept: 1.732 ( \sqrt{3} )

[c] y-intercept: \sqrt{3}=1.732

- The intersections of the parabola with x -axis (if there is any), are the roots of the function and can be found with the quadratic formula.

[c]

[c]

[c]

[c]

[c]

[c]

[c]

[c]

Example: The y-intercept of the quadratic function f(x)=3x^2+2x-1 is c or (0,с).

Example: The y-intercept of the quadratic function f(x)=3x^2+2x-1 is -1 or (0,-1).

[table]

[table border=2 bordercolor=#ddddff cellspacing=0 cellpadding=5 bgcolor=#eeeeff style='color:#000066; font-size:1em;']

[c] y=-x+2

[c] y=\frac{1}{x}

[c] y=2^x

[c] f(x)=\sqrt{x+3}

[row]

[c] y-intercept: 2

[c] y-intercept: none

[c] y-intercept: 1

[c] y-intercept: 1.732 ( \sqrt{3} )

[row]

[c]

[c]

[c]

[c]

[tableend]