## GlossaryT.Square History

Hide minor edits - Show changes to markup - Cancel

[l]Basic formulas for square with side a : perimeter is: L=4a , and area is: A=a^2 .

[l]Basic formulas for square with side a : perimeter is: L=4a , and area is: A=a^2 .

[!c]Side length: a

[!c]Perimeter: L=4a

[!c]Area: A=a^2

[!c]Side length: a

[!c]Perimeter: L=4a

[!c]Area: A=a^2

[c] 3 \,cm

[c] 4 \cdot 3\,cm=12\,cm

[c] 3 \,cm \cdot 3 \,cm=3^2 \,cm^2=9 \,cm^2

[c] 3 \,cm

[c] 4 \cdot 3\,cm=12\,cm

[c] 3 \,cm \cdot 3 \,cm=3^2 \,cm^2=9 \,cm^2

[c] 2,5 \,m

[c] 4 \cdot 2,5 \,m=10 \,m

[c] 2,5 \,m \cdot 2,5 \,m=(2,5)^2 \,m^2=6,25 \,m^2

[c] 2,5 \,m

[c] 4 \cdot 2,5 \,m=10 \,m

[c] 2,5 \,m \cdot 2,5 \,m=(2,5)^2 \,m^2=6,25 \,m^2

Click and drag point A or point B to rotate or change the size of the square ABCD .

[table border=1 bordercolor=#6600cc cellpadding=5]

[table border=1 bordercolor=#6600cc cellpadding=5 width=98%]

[table border=1 cellpadding=5 width=98%]

[row]

[]

[tableend]

[table border=1 bordercolor=#ee8800 cellpadding=5]

[table border=1 bordercolor=#ee8800 cellpadding=5 width=98%]

[table border=1 bordercolor=#660000 cellpadding=5]

[table border=1 bordercolor=#660000 cellpadding=5 width=98%]

[c] 2,5 \,m \cdot 2,5 \,m=2,5^2 \,m^2=6,25 \,m^2

[c] 2,5 \,m \cdot 2,5 \,m=(2,5)^2 \,m^2=6,25 \,m^2

[c]3 \,cm

[c] 3 \,cm

[c]2,5 \,m

[c] 2,5 \,m

[tableend]

[tableend]

[table border=1 bordercolor=#ee8800 cellpadding=5]

[!c]Side length: a

[!c]Perimeter: L=4a

[!c]Area: A=a^2

[row]

[c]3 \,cm

[c] 4 \cdot 3\,cm=12\,cm

[c] 3 \,cm \cdot 3 \,cm=3^2 \,cm^2=9 \,cm^2

[row]

[c]2,5 \,m

[c] 4 \cdot 2,5 \,m=10 \,m

[c] 2,5 \,m \cdot 2,5 \,m=2,5^2 \,m^2=6,25 \,m^2

Related themes:

- Paralelogram?, Rectangle
- Rhombus, Trapezoid, Quadrilateral
- Polygons, Triangles, Kite (Deltoid)

Definition: In geometry, a square is of 2-dimensional figure with four equal sides and four right (90°) angles.

Definition: In geometry, a square is a 2-dimensional figure with four equal sides and four right (90°) angles.

Click and drag point A or point B to rotate or change the size of the square ABCD .

Click and drag point A or point B to rotate or change the size of the square ABCD .

- A square is a rectangle with 4 equal sides.
- A square is a rhombus with 4 right angles.
- A square is a regular polygon? with 4 sides.

Click and drag point A or point B to rotate or change the size of the square \Box ABCD .

Click and drag point A or point B to rotate or change the size of the square ABCD .

- Паралелограма?
- Правоаголник?
- Ромб?
- Четириаголник
- Трапез
- Делтоид
- Многуаголник
- Триаголник

- Paralelogram?, Rectangle
- Rhombus, Trapezoid, Quadrilateral
- Polygons, Triangles, Kite (Deltoid)

[l]1. Check out the square in the **left window**.

[l width=50%]1. Check out the square in the **left window**.

[l]2. You do it in the **right window**.

[l width=50%]2. You do it in the **right window**.

[tableend]

[table width=100%]

- Check out the square in the
**left window**- Choose the Attach:move.jpg Δ icon.
- Click and drag the slider button to increase or decrease the square size as desired.
- Click and drag the point B to slant the square as desired.

- Notice that the square ALWAYS remains a square.

- Construct a square in the right window with the same properties.
- If you need help, click to open a new window with complete directions.

Related themes:

- Паралелограма?
- Правоаголник?
- Ромб?
- Четириаголник
- Трапез
- Делтоид
- Многуаголник
- Триаголник

Interactivity: Make a square.