Let m be a line, \color{blue}{A} and \color{red}{B} two points. For each point \color{#999900}{Q} on m, find the point \color{purple}{C_Q} on the normal to \color{#999900}{m} at \color{#999900}{Q} such that the length of \color{purple}{\overline{C_QQ} } is the sum of the lengths of \color{blue}{\overline{AQ} } and \color{red}{\overline{BQ} } , i.e.   δ( \color{purple}{C_Q} , \color{#999900}{m})= \color{purple}{|\overline{C_QQ}| = } \color{blue}{|\overline{AQ}| } + \color{red}{|\overline{BQ}| } .
Try the result!
This browser does not have a Java Plug-in.
Get the latest Java Plug-in here.
Screencast - a very quick explanation for a friend; bettter one to come

               


Related Topics


 Up one level

geogebra help sliders javascript step steppers forward backward


Page last modified on September 20, 2008, at 10:35 AM